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EXPANSION OF THE FOKKER-PLANCK EQUATION
IN SPHERICAT: HARMONICS
by Frederic A. Lyman

ILewis Research Center

SUMMARY

The first two terms in the general spherical harmonics expansion of the
Fokker-Planck equation are derived by a simplified method. Some remarks are
made on the feasibility of obtaining the general term of the expansion. FErrors
in previously published results are pointed out.

INTRODUCTTION

The Fokker-Planck equation is extensively used in the analysis of non-
equilibrium phenomena in plasmas. The basic assumption underlying this equa-
tion is that collisions which result in scattering through small angles are the
most probable and therefore have the predominant effect on the distribution
function, This assumption is well founded for electrically charged particles
interacting according to an inverse-square force.

If the validity of the Fokker-Planck equation is accepted, a difficult non-
linear integro-partial differential equation for the distribution function still
remains., The usual method of simplifying it involves the expansion of the dis-
tribution function in spherical harmonics in velocity space. The result of
this procedure is a system of coupled nonlinear integro-differential equations
whose independent variables are the magnitude of the velocity and time.

Rosenbluth, et al. (ref. 1) described the spherical harmonics expansion
for the case of axial symmetry, but the resulting system of equations was not
presented. In a subsequent paper (ref. 2), however, the equation for an iso-
tropic distribution function, which is the zero-order equation of the system,
was given. Dreicer (ref. 3) obtained the zero- and first-order equations of
the system. Other authors (refs. 4 and 5) have also derived the zero- and
first-order equations. These two equations usually suffice for most practical
purposes, since the zero-order term in the spherical harmonics expansion gives
the energy distribution of the particles, while the first-order term describes
the manner in which the current is distributed over particles of various ener-
gies.,

The Fokker-Planck equation for electrons may be combined with the usual
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electric and magnetic field terms of the Boltzmann equation and the appropriate
collision terms for elastic and inelastic interactions between electrons and
molecules to yield a description of phenomena in a partially ionized gas

(ref. 3). Even in a partially ionized gas, electron-electron collisions have a
significant effect on the electron distribution function, except when the degree
of ionization 1s extremely low. The inclusion of this effect entails consider-
able analytical difficulty unless simplifications of the type described previ-
ously can be made. Because of the importance of electron-electron collisions

in many situations, the correct formulation of the collision term is vital.

Errors of a nontrivial nature were discovered by the present author in the
results of references 3 to 5. Dreicer's results (ref. 3) are the most nearly
correct, but much more serious errors occur in references 4 and 5. The ana-
lysis leading to these results is not simple, but it could not be included in
detail in the previously cited papers because of space limitations. Therefore,
it is worthwhile to present in full the derivation of the first two equations
in the spherical harmonics expansion of the Fokker-Planck equation and to point
out the errors in the results of references 3 to 5. Although the derivation
follows the general outline of references 1 and 3, parts of the derivation
presented herein are believed to be somewhat simpler than the analyses described
in those references.,

FOKKER-PLANCK EQUATTON

The Fokker-Planck equation may be written (refs. 1 and 3)

(&) - - Corpm + 2 N (1)
ot /, B vy i 2 Sviévj S

where F(V,7,t) is the distribution function, which is defined such that FdSv
is the number of test particles in the element a%v  in velocity space centered
about the velocity V. The components of ¥ on a fixed system of rectangular
Cartesian coordinate axes are denoted by vi(i =1, 2, 3). Repeated subscripts
imply summation. (Symbols are defined in appendix A.)

Unfortunately, the terminology applied tc the various kinetic equations is
by no means universal. Equation (1a) will be referred to as the Fokker-Planck
equation in this report, following the usage of references 1 and 3. Actually,
equation (la) is simply the definition of (OF/dt),, the rate of change of F
due to collisions. In the general case where there are spatial gradients and
external forces acting on the test particles, expression (la) is equated to the
total derivative following the motion of the test particles

oF OF oF oF
5tV axi + a; avi = (5%>C (1b)

and equation (1b) is sometimes called the Boltzmann-Fokker-Planck equation.

The vector (ANi> is the rate of change in the 1th component of velocity of



a test particle of veloecity v; due to its simultaneous
interaction with all other particles, which are called
field particles. If the distribution function of the
field particles is denoted by TFp, (Av;) is defined as

(refs. 1 and 3)

i (Avs ) F.(31) a5y o(g,X)g Av. dQ (2)
i il ’ i
Figure 1, - Orientations of velocities vt Q

of test and field particles with re- £
spect to coordinate system,

where o(g,X) is the differential cross section for
scattering through the angle X, g is the relative speed, that is,

|

g:\?f—v (3)

Av. 1s the increment in velocity of a test particle of initial velocity P
due to a collision with a field particle of velocity ?', and dQ is the ele-
ment of scattering solid angle. The veloeity vectors ¥, ¥', and g are
shown in figure 1. The summation in equation (2) is carried out over all
species of field particles. The meaning of equation (2) becomes clearer if it

is noted that E / Ff asy! f og dQ 1is the instantaneous collision rate
1

v Q
hil

of a test particle of velocity ¥ with all of the field particles. The quan-
tity (Ayi) is frequently called the coefficient of dynamical friction, since

it corresponds to the slowing down of the test particles along their direction
of motion (ref. 6). Note also that (Awi) has units of velocity per unit time.

The quantity (ANiAVj) is defined similarly as

(viavs) EZ‘/V-' Fo(¥1)a5y /;dg,X)g Avyory A (4)

£

and 1s referred to as the dispersion coeffilcient, since only this term in the
Fokker-Planck equation contributes to the spreading of a beam of test particles
(ref. 6).

The Fokker-Planck equation (eq. (la)) may be derived from the Boltzmann
equation by means of an expansion of the kernel of the Boltzmann collision
integral in powers of the velocity increments (ref. 6). The Fokker-Planck equa-
tion is obtained when only terms through the second order in the veloeity in-~
crements are retained. Thus the Fokker-Planck equation is wvalid when collisions
resulting in small angle scattering are predominant. This is true for Coulomb
interactions because of the long range nature of the inverse-square force,



The differential cross section for Coulomb scattering is the familiar
Rutherford cross section

2
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In this equation the subscripts t and f refer to the test and field parti-
cles, respectively. The reduced mass my o is

m m

_ tf

(Mks units are used throughout this report. Thus the electric charges ey
and ep are measured in coulombs (e.g., ey = *tZie where Ziy 1is the

charge number and e = l.602x10'19 C is the absolute value of the electron
charge). All the results herein may be converted to cgs electrostatic units
by simply deleting the 4ne.)

The calculation of (Awi) and (ANiAVj) for Coulomb collisions was carried

out by Rosenbluth, et al. (ref. 1), who showed that these quantities could be
expressed by means of the following simple formulas:

Oy
Avs ) = 7
(ovy) = b (7)
i
d2Gy,
(&vbv ) = SvoSv. (8)
1 Jd
where the functions and Gg, which are now generally known as the

Rosenbluth potentials, are defined as?

Ireicerts expression for o (following eq. (4) of ref. 3) erroneously has
(eieg) in the numerator., This rather trivial misteke is not one of the errors

referred to in the INTRODUCTION.

2Dreicer’s notation is used in equations (9) to (11) to facilitate com-
parison with his final results. His definition of Hf and Gt differs from

that of Rosenbluth, et al. (ref. 1) by the presence of T4p. Dreicer's equa~-

tion for Tr (eq. (8) of ref. 3) contains the same error as noted in foot-
note 1, in addition to incorrectly having the reduced mass instead of my. The
latter error also appears in reference 1.

4
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and the velocity-independent factor Ptf is
2 2
e,e e,e
o (Sf2) L 2 o (ot5f) L
Pip = 4 (4ﬂ€ ) 5 1n VI + A, ~ 4x <4ﬁ€ ) > 1n A e (11)
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The quantity Atf’ which is usually much larger than unity, is defined as
the dimensionless ratio
An=L (12)

tf bO

fil

where d 1is the Debye radius and bo the impact parameter for 90° scattering.

When the charged species are in thermodynamic equilibrium at the temperature T,
the Debye radius is given by (ref. 6, p. 21)

4nlN e2
s 8

kT  4xe
fe)

1
= = (13)
42

S

where the summation is over all charged species. The average impact parameter
for 90° scattering is (ref. 6, pp. 16 and 21)

~ ’etefl 1 _ Ietefl 1
O 4ﬂ€o mtf<g2> 4ﬁ€o 3kT

(14)

since for thermodynamic equilibrium, mtf<g2) = 2ZkT, as may be easily verified
by integrating g2 over Maxwellian distributions of field and test particles.

Therefore, equation (12) becomes
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By direct differentiation of equations (9) and (10), the following useful
relations can be derived® (refs. 1 and 3)

BZH m, + m
v Hy = L § L £ 2
Vi By = 5os = - A — Ty pFe(¥) (18)
i-'i il
f
m
2 £
v, G, =2 E —-——mt ¥ g He (17)
T
d%a Z
4 t -
G, = = - 8xn T oFa(v
Vv St BviBViBVJBVJ - tf f( ) (18)

where H,. and H, are related by the first identity in equation (9).

T €

With the use of equations (7) and (8), the Fokker-Planck equation
(eq. (12)) for Coulomb collisions may be written in terms of the Rosenbluth po-
tentials H, and G, as follows:

© T
oF 3 +t 1 A Gy
(& ) =" S, <F "'av.> * 2 S (F av.av.> (19)
cc i i J i9Y5

Rosenbluth (ref. 1) and Dreicer (ref. 3) express equation (19) in spherical
coordinates without further reduction. For the present purposes, it 1s more
convenient to first reduce equation (19) to a simpler form. Expansion of the
derivatives of the products leads to

3%H 5 32¢ 2 32a
(aF> _Lp O ap M L a< t>+1 32F t (20)
ccC

1 T
5? W - gﬁ Wl - E F W E E‘ aVJaVJ _2_ avian aVian

i9Vi

SThe factor [y 1s missing from equations (9a) and (9c) of reference 3.



Substitution of equations (18) to (18) into equation (20) yields

2
- m, s dF D my - Mg R
(5%) = 4 g me e (ITO) - SosT ) omowmg B T2 Sviov, ovov
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This form of the Fokker-Planck collision term is not new, since it was given by
Longmire (ref. 7), for example. Equation (21) is converted to an equation in
spherical coordinates most simply by first writing it in terms of general co-
variant derivatives valid for any coordinate system and then specializing the
result to spherical coordinates. This procedure is carried out in appendix B.
The result, equation (B1l7), could be used as the starting point of a general
spherical harmonic expansion of the Fokker-Planck equation. Because of the
nonlinear form of the equation, however, the general term of the spherical
harmonics expansion would be exceedingly cumbersome and not too useful for
practical purposes. This report will therefore confine itself to the deriva-
tion of only the first two terms of the spherical harmonics expansion, and for
this limited purpose a much less cumbersome procedure will suffice.

EXPANSTION TN SPHERICAL HARMONICS AND THE LORENTZ APPROXTIMATTON

A considerable simplification of the Fokker-Planck equation is obtained if
it is assumed that the distribution function is nearly spherically symmetric in
velocity space. The distribution function is written as a spherically symme-
tric distribution Fo(v) (not necessarily Maxwellian) plus a small perturbation
£(¥); that is

F(7) = FO>v) + &(¥) (22)

This is equivalent to retaining the first few terms in the general spherical
harmonic expansion of F

F(¥) =E Z F(v)Y, (6,0) (23)
1=0 m=-1

In general, FIM 45 a function of the position vector T in rhysical space and
time, as well as v. This space and time dependence is understood in equa-
tion (23) and all subsequent expressions. The surface harmonics YZm(G,@) are
defined as (ref. 8, sec. 3.4)

21+ 1 (1 ~m)d i
Yzm(eicp) = A5t (Z + m 1 Pt;'l(cos e)elmq) (24—&)

where P% are the associated Iegendre polynomials, defined as

(24Db)



The angles 6 and ¢ are the polar and azimuthal angles, respectively, mea-
sured with respect to an arbitrary but fixed orthogonal triad of unit vectors

Pal

~ N
i, J, k (fig. 1). Since Y, o n = (-l)mYﬁm where the asterisk denotes the com-
2

plex conjugate, one way to ensure that F 1is real is to assume that
FZ,-m - (_1)m(FZm)*.

Although the expansion of T (eq. (23)) is convenient for many purposes
because of the orthogonality properties of the spherical harmonies, it still
must be interpreted with reference to some set of axes, and this is sometimes
inconvenient. It is often desirable to recast equation (23) in an invariant
form, which is independent of the particular choice of axes., This was done by
Johnston (ref. 9), who has shown that the expansion of T (eq. (23)) is equiva-
lent to a single sum of contracted tensors of the form

[+¢]

> 1 12 L
F(v) = Filiz"'iz(v) 1 (25)
1=0
where F; 1 1 is a tensor of order 1. The general expression relating
12... Z

this tensor and the coefficients FU of equation (23) is given in reference 9.
This somewhat complicated expression will not be required in the present report
because only the first two terms (1 = 0, 1) of equation (23) will be considered.
When these terms are written out explicitly by using the expressions for YZm
obtained from equations (24),

1
F(¥) = FOOUv)Y_ (6,0) + FIV)Y (0.0) + .
@) = v, (6,9) + 3 FRY, (6,0)
m=-1
= VZlE Foo(v) - Y'Béa? sin 642 Re [Fll(v)] cos @
3
- 2 Im [Flleﬂ sin ¢p + Yo Flo(v)cos B+ o o (26)
Equation (26) may be cast into the desired form
- . =
F(¥) = FO(v) + FL(v) - Y+ . . . (27)
v



by making the definitions®

¥o(v) = ‘/Z—l; FOO(+) (28a)

:E')]-(v) = ‘/Ec_ {— ~/2 Re[Fll(v):'; + /2 Im[Fll(v)]:j\ + Flo(v)llt\} (28b)

When there is rotational symmetry about the polar axis E, only the terms
for m =0 in equation (23) are retained and the expansion reduces to an ex-
ransion in ordinary Legendre polynomials

(o]

F(3) = ;) FL(v)P,(cos 6) (29)

where

ri(v) = Y= F0v) (30)

-
(see eq. (3.57) of ref. 8). In this case, the vector FL  is directed along
the polar axis, as is clear from equation (28b). For axial symmetry, the polar
axis is the direction of the force on the test particles, for example, an
electric field or concentration gradient (see ref. 10, pp. 404-408). TIn the
presence of electric and magnetic fields, however, there is in general no

axial symmetry in velocity space because, for arbitrary directions of

— - —> e

E and B, the force (E + v x B) is not rotationally symmetric about any axis
-

and the direction of F (v) is unknown a priori.

The Lorentz approximation (see refs. 3 and 11) consists of retaining only
the first two terms in equation (27) under the assumptions that

ﬁl] << ¥O (31)

and that the remaining terms are of negligible importance. As Johnston (ref. 9)
has pointed out, FO alone is needed to calculate the average value of any
scalar function $S(v), such as the kinetic energy, while the average value of
any vector quantity of the form Q(v)V, such as the velocity vector itself or

fa
the heat flux vector, depends only upon Fl. Terms of higher order than those
written out in equation (27) account for higher order tensor properties, such
as the nondiagonal elements of the pressure tensor or the energy flux tensor
(ref. 9).

The physical meaning of condition (31) can be established as follows. The
average drift velocity of the test particles is (ref. 9, eq. (10b))

“Equations (28a) and (28b) differ from equations (9a) and (9b) of refer-
ence 9 by numerical factors because the spherical harmonics are defined dif-
ferently in reference 9.
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- - 1 -, 3 4x 321
= 1 = Ax a
vy (v) 5 /vF a7V = == / voF(v)dv (32)
0

The average random speed (v) is (ref. 9, eq. (10a))

[ve]
/VF adv = -‘i‘\Ti/ vOFO(v)dv (33)
0

Therefore, condition (31) implies that the magnitude of the drift velocity is
much smaller than the random speed.

(v) =

=2

It should be emphasized that in the present analysis, as well as in the
analyses of references 1 to 3, neither the spherically symmetric part Fo(v)
of the distribution function of the test particles, nor the corresponding func-

tion F%(v) for the field particles, is assumed to be Maxwelllian. Furthermore,

the effect of collisions among the test particles (self-collisions) is included
in the analysis, inasmuch as the summations over the various species £ of the
field particles include the case f = t, where the field and test particles are
the same., In general, the Fokker-Planck equation 1s nonlinear due to the pres-
ence of the self-collision terms.

On the other hand, some authors (refs, 12 and 13) linearize the Fokker-
Planck equation by assuming that the distribution functions of both the test
and field particles may be represented by a Maxwellian distribution plus a
small perturbation. In the notation of this report, such an assumption cor-
responds to teking FO(v) and FO(v) to be Maxwellian distributions, for which
the rate of change of FO(v) due to collisions vanishes. Iinear ordinary
integro-differential equations for the perturbation terms, such as FL(v) (in
the notation of this report), are cobtained in references 12 and 13 as a result
of this assumption. Balescu (ref, 14) uses a somewhat different method of
linearizing the Fokker-Planck equation. He assumes that the test particles do
not interact among themselves but only with the field particles, which are
assumed to be in thermal equilibrium and, therefore, have a Maxwellian distri-
bution. In Balescu's linearization, the distribution function of the test
particles is not assumed to be close to equilibrium, however, Neither of the
aforementioned linearization methods is used herein, inasmuch as the present
analysis is intended to include those cases where the distribution function,
although it is nearly spherically symmetric, is not close to a Maxwellian dis-
tribution, and self-collisions are important.

The simplified expansion method to be used herein proceeds in the follow-
ing manner. The Lorentz approximation (eq. (27)) is substituted into the
Fokker-Planck equation (eq. (21)), which is then reduced to twg equations,
describing the rates of change due to collisions of FY and F-, respectively.
In order to do this, it is necessary to determine at least the first few terms
of the expansions for the functions H and G in spherical harmonics., Tt
turns out that it is rather easy to expand functions H and G in full,

10



Rosenbluth, et al. (ref. l), did this previously for the case of axial sym-
metry. In the next section, the expansions of H and G in terms of general
spherical harmonics are obtained by a method that is simpler than that of refer-

ence 1.

EXPANSION OF FUNCTIONS H AND G

The function Ht(v) defined in equation (9) involves the integration of
over the distribution function of the field particles according to

/F(V')d v / f / ')
(v') av? sin 6! 4! (34)

where the angles @' and ¢' are shown in figure 1. In order to expand Hy,
it is convenient to first expand gl as follows (ref. 8, p. 62, eq. (3.41):

0]

1
1__1r b (cos ) (35)
&% - T T
>
1=0
where (v>) is the smaller (larger) of (v,v') and Y is the angle between

¥ and v', as shown in figure 1. The relation between v, and the angles
8, ¢, 0', »' measured in the fixed coordinate system i, J, k is

— —
cos ¥ = X_LTKL = cos @ cos @' + sin 6 sin 6' cos (o - ') (36)
\'A%

The addition theorem for spherical harmonics (ref. 8, p. 68, eq. (3.62)) is
used to express Z(cos Y) as a function of 6, @, 6', @'

1
4t

P_(cos 1) = T T Yim(e”Qx)YZm(e’®) (37)

1
m=-1

When equations (23), (35), and (37) are substituted into equation (34), it
becomes

11
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F (V')d v' Ax
21" + 1

1=0 m—-l =0 m —-Z

1
t 2 t V< im 1
X (v')” av = Ff (v )Yz.m,(e,@)
V>

2n 7
>f dcp’f sin 6' d6' Yi,m,(e',cp')YZm(e‘,cp') (38)
0 0

Because of the orthogonality property of the spherical harmonics (ref. 8,
p. 65, eq. (3.55))

2n 7 %
f de’ f sin @' de' Y, (6',9' )Y, (8',0! ) =3 (39)
0

0 11 m m

(where 8,,, =1 if 1 =1' and is zero if 1 £ 1'), all terms in the m!
and 1' summations are seen to vanish when m' #m and 1' £ 1, while the
terms for m' =m and 1' = 1 integrate to unity. The resulting expansion
for Hy can be written

5 () - ZH @) ZZZ BT (6,9) (40)

1=0 m=~1
where
v o0
m,_ + mnm 1+2 A
m _ 47 t f (V') my 4 ' v m
He (v) = g7+ 1 ~mp - Tee ST T (VAT + (vy 1L Fo(vh)av!
A2
0
(41)

12
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Note that v) is related to F.(v',0,9) by means of a one-dimensional linear
£ 20
integral operator in v'.

The expansion of G (V) is carried out by first expanding g in Legendre
polynomials. Both sides of equation (35) are multiplied by

g2 =v2 + (v')2 - 2vv' cos Y, yielding

o]

1

v
- =< 2 112 - 1
g = VZ+1 {[v + (v?) ] P, - 2vv' cos T P, (42)
>

If the recursion formula (ref. 8, p. 59, eq. (3.29))

(1 +1)P - (27 +1) cos 1 P, + 1P, 1 =0 (43)

1+1L

is used to eliminate cos 7 P, from equation (42) and the numbering of the
terms in_the series is changed, the following expansion of g is immediately
obtained

1
v [ V. v
- < |2 "2 - ooyt (—— =y L L <
&= ol R A <2z Tt arE 3w )| Faleos 1)
v> < >

(44)

Since v& + (v')2 and vv' are unchanged by an interchange of v and v,
they can be replaced by (vi + vi) and VS, respectively, and equation (44)

can be written more simply as

1 2
v v
1 < 21 - 1L <
g = 27 -1 i1 ( - 5= V2>PZ(COS 1) (45)
> >
1=0

The argument used in deriving the expansion for Hy 1is repeated for Gy with

equation (45) replacing equation (35). The result can be written down immedi-
ately

o]

JA
6, (%) = Z 6p(¥) = Z 20> ey, (0,0) (46)

1=0 m=-1

5This method of deriving the Legendre polynomial expansion of g was
suggested by Willis H. Braun of Lewis.

13



~ where

im 4nt (v') U2 21 - 1 (v')®
Ge (V) = - ——rT S 1 (V )dV
22 g tf -1 21+ 5 32
0
Tl 2
v 21 -1 v
" 5 \1 - 2w s s ) Fe(vav (47)
(v') (v')

Note that Gf(V), like Hf(?), is related to Ff(v',e,w) by means of a one-
dimensional linear integral operator in v'. Equations (40), (41), (46), and
(47) represent the extensions of equations (40), (41), (45), and (46) of refer-
ence 1 to general spherical harmonics. In the case m = 0, the two sets of
results become identical., In reference 1, the expansions Hy and Gy are
derived by first expanding g“l and g in three-dimensional Fourier integrals.
The subsequent integrations in that paper involve integrals of products of
Bessel functions. The present derivation seems to be considerably simpler., In
reference 3 the general terms of the expansions for Hy and Gp are not given,
so comparison is impossible.

For subsequent purposes, only the terms for 1 =0 and 1 =1 in the ex-
pansions of H¢ and Gy (egs. (40) and (46)) are required. These terms may be

written in a form exactly analogous to equation (27)

<1<

doeoe . (48)

Ho(v) + Fe(v)

1l

1, (V)

<1<d

oo (49)

1l

Gtﬁ’) Gg<v) +E§(v)

Since Hf and Gf are related to Ff(v ,6,0) by linear integral operators in

v', it is clear that Hg, Gf: and H%, Gl are related to Fg and F r» Tespec-

tively, by the same integral operators, namely

v 00
: : m, . m
0 — 0 _ tt T 1 1 Y2 501 Y gnrt 107 < 1 Y Jnrt
Ht(v) = Hf(v) = Ax E s Ptf[; (v faFf(v Yav' + v Ff(v Ydv
0 v
f f

(50)

€In equation (40) of reference 1, a(a)(v,u) should be replaced by
A(a)(v p) on the left side; a similar change should be made in equation (41).

14



0 v

. . W
?Ii'(v) = E ﬁi..(v) = —S—ﬂ- i Tt T ¢ Typ j’-—z/ (V')Sf%(v')dv' +/ E%(v')dv' }/j
f

(51)

v v
Gg(v) = E Gg(v) = 4x E Typ v/ (v')ZFg(v')dv' + El; / (v')4Fg(v')dv'
0
f f 0
©o 2 o
+/ (v!) F(v' )av! +V?/ VIFY(v')av! (52)
v

v

() =) Ev)

A% A%
At 1 5= -
= 7% Tip :/_'é'/ (v") Fi:(v')dv‘ -5 / (v')SF%(v')dv'
0 0

f
[o¢] [oe]
+ v3/ E“)i;(v')dv' - 5v/ (v')Z%‘}(v')dv' (53)

v v

I
I

Equations (52) and (53) agree with equations (16) and (17) of reference 3, when
equation (17) is written in vector form and the incorrect upper limit o in
the flist term of that equation is replaced by v. No expressions for Hg

and are given in reference 3.

© P
DERIVATION OF EQUATIONS FOR F  AND

Fquation (21) will now be decomposed into equations for FO and TE‘>1. The
distribution functions F and Fp of test and field particles, and the poten-

tials Hf and Gt are written

Il

F(V) = FO(v) + &(7) (22)

Fo(¥) = Fo(v) + £a(F) (54)
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HY(v) + n(¥) (55)

1

Ho (V)

It

6, (¥) = Go(v) + t(¥) (56)

where in the spirit of the Lorentz approximation &, §f, n, ¢ are counsidered

to be small perturbations. When products of €, gf, 1, and ¢ are neglected

in comparison with the first powers of these quantities, the various terms in
equation (21) become

_ 7950 4+ 7O 0
FoF = FOFO + 708 + Ot (57)

0
or OHe 3p0 OHp  3F0 3y aHf dt

= + (58)
avi Bvi Bvi Bvi Bvi Bv 8v Bv
yep %Gy 3250 %G 3250 2 %Y 32
ooV, SV.ov. = V.ov. v.ov. T Sv.ov. ov,ov. * . ov. ov.ov, (59)
i i i i iTg i A T

Since all the quantities with superscript O are functions of v, the follow-
ing reductions can be made in the derivative terms:

o o ov Vi ard (60)
V. - Ov ov. v ov
i i
320 3 (ViarP) Pigar® | ViV 3 (1 ard (61)
Bviévj - ij v ov /] v Ov v oV \v ov

Similar expressions are of course obtained for Hg and Gg. If the gradient

vy 18 written in spherical coordinates, it follows immediately that

Viﬁf:-\_f"vv:V% (62)

i

Equation (62) is then used to show that

J2 d 3 (. 3 2 dF
AEAS Sviévj :LB_'(J T) 1i357f3=v§(v g>—vy_v e )

Expressions such as equations (60) and (61) are substituted for the derivatives

of TFO, HO and Gg in equations (58) and (59), and use is made of equations

16



(62) and (63). The results may be written

or OHp  3p0 BHf a0 ¥y Sy 2

8Vi av T3V ov av av ;v ov (64)

s2p 9%, 32p0 3% ac? 350
Bviavj Bviavj = N + ;E v v

0 lesy 3
+iaFv3§+v§—<laFo)62§+l Gtv25+v55—<v;3>82 (65)

v \v ov 32 v ov

If the quantities €&, n, ¢ are identified as the terms for 1 =1 in the
spherical harmonics expansion of F, Hp, and Gy, it follows from equations
(27), (48), and (49) that

£(3) = Flv) - 3 (66)
n(v) = E?(V) . % (87)
) = Ge(v) - ¥ (&8)

The derivatives of &, Uy ¢ with respect to v can be calculated immediately,
since the unit vector V/v remains fixed in magnitude and direction as v
changes but 6 and ¢ remain fixed., Thus, for example

3% _ v . OFHw)

oY T (89)
2 - 2o
e Vv v

The simplest method of calculating Vﬁ £ and Vﬁ £ is to note that, for
any function V(v,6,p) expandable in spherical surface harmonics as

o) 1
v - Z (Y (6,0) (71)
im

1=0 m=-1

the Iaplacian is

17



im
2 . 1 0 (200"
V& Vo= {%Zm 42 ov <v ov )

1=0 m=-1

im 2
v 1 9 . 0 1 9
+ = [%35—5 e (%1n 2] 55) + > ——?] Ylm (72)
v sin 6 @

But Y, satisfies the equation (ref. 15, p. 53, eq. (5))
L —é-sinei+-—l—§-?—Y ==~ 1(1+ 1)Y (73)
sin 6 00 36 .2 2] “im T im
sin”9 op
hence,
© 1
2 _ i 8 2 5 _ Z(Z + 1 m
Vo v = E [VZN(V > 2 VY (74)
1=0 m=-1
Then, because £ can be written (see eq. (26))
1
1m
= F
e = Y WY _(0,9) (75)
m=-1

it follows from equation (74) that
1

- = m=-1
> > 11 - 7
- %5&7(“2 E)‘f_E [Fl(v) ‘ ‘]

= % .{f& g% (vz g%) - j%]fl(v) (76)

The expression for Vﬁ ¢ is similar to equation (76), with Fl replaced by

<

GL. substitution of equations (89), (70), and (76) and their counterparts for
the derivatives of 7 and ¢ into equations (64) and (65) yields after some
rearrangement and cancellation of terms
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0 Tl
or He o e T <8FO Sy O o7 ) (77)
v

2 2,0 0 - il
32F o%Gy, =52F08Gt+iac}t 5F0+Lf _E_aFo(aGt_lad>
OviOvy Qvidovy oy2 av@ | w2 Ov ov v |32 0v \S&v T vt

When equations (57), (77), and (78) are substituted into equation (21), the
Fokker-Planck equation can fipally be decomposed into the following two compo-
nent equations for FO ana Fl:

0 0
6F0> [4: my, 0.0 . o0 (mp - my OHp  ; OGy 1 3% Gf 320
- E 1 L Ty FOFO + + 79
<5t ce 7 mg ~ OF ov \mg + mg OV v2 OV 2 ove v (79)

<8—F>1 82 0 O3l ol (mf - m BHg N aGiQ)
31:—_CC= 25V2 3v2 +Bv me + my OV +_2W

T

<

COMPARISON WITH OTHER WORK
Equations (79) and (80) are not exactly in the form given by Dreicer
(compare egs. (18) and (19) of ref. 3). Dreicer evidently eliminated the poten-

tial H by means of relations (17) and (18). To compare the results obtained
herein with Dreicer's, it is necessary to do the same thing. From equation (17)

Cp (81)
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The expansions for Hp (eq. (40)) and for G (eq. (46)) are substituted into
equation (81), and the Laplacian of Gp is calculated. When equation (74) is
used and the coefficients of Y¥;, on both sides of equation (81) are equated,
the result is

14 my +om
) - B[R (2 ) K o (e2)
In particular,
] +
Hg(v) = (m—;t—z?n'fif—) ;rj;z % (vz %) Gg(v) (83)
= _mg ety 3 [ 20D 2 =
H%(V) = Tmf_ [ﬁ v (V &r_) E‘] Gf(V) (84)

Equation (83) is substituted for Hg in equation (79), which, after some rear-
rangement, can be written as

0 2.0 3.0 2.0
(aFo _ snp, 050 4 O (1 B | 2c 3%p 9 Gf) , 1 970¢ 3250
5t /oo vy ov \v2 ov v ovP © 0 2 ov% ov?
£
(85)
where

b = % (86)
c ='?£§éggﬁ (87)

Equation (85) is exactly the same as Dreicer's equation (18). It is not clear
why he chooses to eliminate Hy in favor of Gg, since higher derivatives are

obtained in this manner.

Tn order to compare equation (80) with Dreicer's equation (19), the follow-
ing relation must be used:

which follows from equation (18). When the expansions of Fy and Gg (egs.
(23) and (46), respectively) are substituted in equation (88), the Laplacian
operation performed on Gp twice, with the use of equation (74) each time, and
finally the coefficients of Yy, on each side of equation (88) are set equal to

each other; the following result is obtained:
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2
- Bl (V)= [% S(eg) - 1’] 62"(v) (89)
Vv v

In particular, the relations that are needed are

z
- 8xTy FOA(v) = [_12. %(vz %)] aQ(v) (90)
A\
2
- 8nh Fo(v) = [v—; 2 (vz %) - 5—2] Gx(+v) (91)

-
Equations (90) and (91) are substituted for Fg and F% in equation (80).
Also, H? and ﬁ% are eliminated by means of equations (83) and (84). After

some manipulation, equation (80) becomes

2 0 . 340 200 0
SF) ;5Gf62?l+aFlcaGf+2_caﬁ+g_a&>
3t - 2 3v2 w2 ov dyd Vo 3y v2 ov
T

ccC

—_ == =
2 Bv4 v BVB 3 Ov

4.0 3.0 0 21
—>l<b 0"Gy gp OGF 1 aGf) 1 32p0 O°Gy
v

_F - —
2 3v% vt

—>1 =1 =1
or0 [ 9%CF  2c 0CF  2p -1 0F 1 - 2p =
+ 55 \¢ + — + + G
v Qv vodve ve oV o T,
4=, 3=l 2=21
- FO(P. _a % , 2 _a % _ 2 _a Gf)] (92)
2 ové VoS ve dve

which is in the form of equation (19) of reference 3. It would appear that
equation (80) is more convenient than equation (92), since the latter contains
higher derivatives of the G functions.

Comparison of equation (92) with Dreicer's equation (19) discloses two
differences. First, and more important, the last term in Dreicer's equation,

-(4/v5)8G%/8v, was not obtained herein. Since the calculations were checked

by a number of different methods and the term in question was unobtainable, it
is believed to be incorrect. The second difference is evidently a misprint in

the term (1/2)(52FO/BVZ)(Bzai/avz), where Dreicer has Fg instead of FO.

21



Shkarofsky (ref. 4) quotes Fokker-Planck collision terms similar to equa-
tions (79) and (80), but specialized to the case of electron-electron colli-
sions. A comparison of the present results with those of reference 4 in that

special case showed exact agreement for (Bﬁl/at)ee (ref. 4, eq. (5b)), but
wide differences in the expression for (BFO/Bt)ee (ref. 4, eq. (5a)).

Shkarofsky's equation (5a) is in fact dimensionally incorrect, and the term con-
taining the second derivative of FO is missing from it.

Finally, some comments on an early paper by Cahn (ref. 5) may be of inter-
est, because he apparently managed to obtain an electron-electron collision
term in a form that enabled him to integrate the Boltzmann equation and express
the distribution function by means of a single integral. If this result were
correct, it would be quite significant due to its simplicity; however, it is
believed that Cahn's result is not correct. The reason has.E? do with the way
in which Cahn carried out integrations over the velocities v  of the field
particles. In reference 5 (p. 298), the lower limit of integration on the
relative speed [3’ - ?l is quoted as v' - v. Actually this should be
[v' - v|; otherwise, it 1s incorrect in the case where v' < v, because the
relative speed must be positive. The result of the angular integrations is
therefore different, depending on whether v! < v or v' > v. The integration
over v' from O +to « then breaks into two integrals with different inte-
grands, one integral from O to v and the other from v to =, as obtained
in this report (see egs. (41) and (47)) and references 1 and 3. Cshn has only
one integral, from O to «=. For instance, the following result is given in

reference 5 (p. 299):

J9° - %? V.5 9% rav!

0]

where Cahn's notatlion need not be explained in detail here, except to note that
£ 1is a constant related to I'tf, while U090 involves the distribution func-
tions of the field and test particles and their derivatives. The result should

be

4
g0 = &y o0 X%— av? + 0yt gy

0 v v

This difference is important, because Cahn's electron-electron collision term
is the divergence of the vector Jj, and a number of extra terms would appear
from the differentiation of the integrals having variable limits. These extra
terms complicate the result considerably, and there is no longer a possibility
of obtaining the distribution function ¥0 by simple gquadratures, as claimed

by Cahn.
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CONCLUDING REMARKS

The first two terms in the spherical harmonics expansion of the Fokker-
Planck equation have been obtained. The results are nonlinear integro-
differential equations whose variables are the speed v of the test particle
and the time t. Although neither these results nor the general method of de-
riving them is entirely new, the fairly complete and straightforward deriva-
tions presented herein resolves the errors and differences that exist in previ-
ously published results. Although the Fokker-Planck equation is the best pres-
ently available means of including the effect of electron-electron interactions
on the distribution function, it is still rather intractable to all but numeri-
cal means. A simpler electron-electron collision model, which would bear the
same relation to the Fokker-Planck collision term as the Kroock model does to
the Boltzmann collision integral, would be invaluable for workers in the field
of plasma physics.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, Januvary 8, 1965.
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APPENDIX A

SYMBOLS
The mks system of units is used throughout this report
ith component of acceleration
magnetic field
my, /me
impact parameter for 90° scattering, eq. (14)
(me - my)/2me
Debye radius, eq. (13)
electric field
electron charge (e = 1.802x10"19 ()
electric charge of field particle, tZpe
electric charge of test particle, izte
distribution function of test particles
distribution function of field particles
Rosenbluth potential, defined in eq. (10)
relative speed of test and field particles, eq. (3)
relative velocity, v - v
conjugate of metric tensor, eq. (B5)
metric tensor

Rosenbluth potential, defined in eq. (9)

Christoffel symbol of second kind, eq. (B2)

imaginary part of

unit vectors along Cartesian coordinate axes



[13,k]

Re[ ]

=l

Christoffel symbol of first kind, eq. (B3)
Boltzmann constant, 1.3804x1072° J/°K
mass of field particle

mass of test particle

reduced mass, mtmf/(mt + mf)

particle number density, m=3

Legendre polynomial of order 1

associated Legendre polynomial, defined by eq. (24b)

real part of

position vector

arc length in velocity space

temperature

time

general curvilinear coordinate in velocity space

magnitude of velocity of test particle, (vivi)l/2

magnitude of velocity of field particle, (vivi)l/z

velocity vector of test particle

velocity of field particle

drift velocity of test particles

ith component of velocity of test particle
increment in v; due to collision

ith component of velocity of field particle
larger of (v,v')

smaller of (v,v')

th

1 component of position vector =r

spherical harmonic function defined by eq. (24a)
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Z charge number

Tig defined by eq. (11)

T angle between '3 and 3'

aij,6§ Kronecker deltas in Cartesian and general coordinates, respectively
<, dielectric permittivity of vacuum, 8. 854x10"12 F/m
¢ perturbation in G, eq. (56)

n perturbation in Hp, eq. (55)

2] polar angle in velocity space

App defined by eq. (12)

s cos O

3 perturbation in F, eq. (22)

Ef perturbation in T, eq. (54)

o] differential scattering cross section

P azimuthal angle in velocity space

X scattering angle in center of mass coordinates
Q scattering solid angle

() average value

V& gradient operator in velocity space

Vi Taplacian operator in velocity space
Subscripts:

c collision

ce Coulomb collision

ee electron-electron collision

£ field particle

h,i,j,k tensor indices of covariant vectors and tensors

26
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t test particle

B denotes covariant differentiation

Superscripts:

h,i,j,k tensor indices of contravariant vectors and tensors

1 index denoting term in Iegendre polynomial expansion
im indices denoting term in spherical harmonics expansion
m index denoting term in azimuthal angle expansion

0 zero-order terms

1 first-order terms

* complex conjugate

- vector

unit vector
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APPENDIX B

TRANSFORMATION OF THE FOKKER-PLANCK EQUATTION TO
SPHERICAT: COORDINATES

In this appendix, equation (21) is transformed to the spherical coordi-
nates (v,0,0) in velocity space. This transformation was performed on the more
complicated equation (19) in reference 1 for the special case of axial symmetry.
Basically the same method is used, namely, transformation to a general curvi-
linear coordinate system and the specialization of the result to spherical co-
ordinates. Axial symmetry is not assumed, however.

Iet the general curvilinear coordinates be denoted as ul, u2, ud, First
the term (BZF/BVibvj), which was written as a Cartesian tensor in equation (21),

will be +transformed into a second-order covariant tensor. ©Since F is a
scalar, the proper extension of (BZF/Bviavj) to general coordinates is the sec-

ond covariant derivative of F (ref. 16, p. 32, eq. (22.7)); that is,

d2F n) oF
F = - : - .. —_—
13 Sutoud {1J} Sul (1)
where (ref, 16, p. 26)
{i}} = g™[13,k] (B2)
and
8. og. 3g. .
. 1 ik Jk 1J
[13,1{] =—< — + — - ) (]35)
2 du? dut Buk

are the Christoffel symbols of the second and first kinds, respectively. The

quantities gy are the elements of the metric tensor; that is, the element of
distance ds between two points whose coordinates differ by dul, duz, du® is

ds? = g, .dutaud (B4)
1J
and glJ is the contravariant tensor conjugate to g; 3 defined such that
i3 = 8t
g8 = & (BS)

where 6% ig the Kronecker delta.
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In Cartesian coordinates, (azGt/Bviavj) is defined such that
3%
(Ov. v, ) = i (B6)
i J SViSVJ

but, in general curvilinear coordinates, this must be written as a second-order
contravariant tensor, because the velocity wul and velocity increment Aul

are contravariant vectors. Thus the proper extension of equation (B6) to curvi-
linear coordinates is

(tuimad) = glbgdkg
J

£ bk (B7)

where the nontensor subscript t on G should not be confused with the tensor
indices h,i,j,k.

The term (BF/avi)(BHf/Bvi) in equation (21) can be transformed easily,

since the first covariant derivative of F is simply
¥, =—— (B8)

and the quantity (Avi) = aﬂi/avi defined in equation (7), when written as a
contravariant tensor, becomes

(') = g™JH, (B9)
J

In general curvilinear coordinates, equation (21) becomes

aF) mg, >
(&) -« m TP (PF)
ccC
T
Ls OF D My = e 1 an d
| _ : = ,ih _Jjk
& aul auJ mt + mf Hf TzEE F;ijGt;hk (BlO)

T

For spherical coordinates the element of distance ds is given by

2
ds? = av® +v2 462 + v2sin®0 dg? = dv@ + _V_z au? + v2(1 - p2)ag? (B11)
1-p

where for convenience the coordinate
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L = cos 6 (B12)
will be used in place of 0, as in references 1 and 3. Hence, if
ul =v, u2 =p, ud =09 (B13)

it follows from equations (B4), (B5), and (Bll) that

1
gll =7 = 1 (Bl4a)
g
2
1 v
g, =53 = 5 (B14b)
22 4 1 -y
_L _ 2 2
g
g..=gd =0 (1 # 3) (B14d)

1j

Equation (B14d), which is true for any orthogonal coordinates, may be used to
considerably simplify expressions (B2) and (B3) for the Christoffel symbols
(see ref. 16, p. 28, Ex. 2). TFor spherical coordinates, it then follows from

equations (B2), (B3), and (Bl4) that

{212} _ ﬁ? (B15a)
B S
{515} - - (1 - u?) (B15c)
-0 -
8- 60

all other Christoffel symbols being zero. Substitution of equations (B1l5) into
equation (Bl) yields

2
p9F (B16a)
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2
J°F v OF " OF
F = + -k (B16b)
,22 BIJ2 1-u28V 1—u2§“
2
°F oy OF 2y OF
= + - - u(l - Bleé
Faz=_32 v(1 - pe) 37 - B o) 5 (Bléc)
op
gy, YE _L1X (B16d)
,12 ~ 7,21 T dvop | vV ou
2
J°F 1 oF
P13~ F5 " &6 - ¥ 39 (B16e)
2
O F U oOF
= = _ o~ - = f
Fas=F 5 = oo R (B16T)
The expressions for the components of G, ,, are of course analogous to the

t,1]j
formulas of equation (BL6). Substituting equations (B14) and (B168) into equa-

tion (BlO) results in

1 oF OHp

(1 - u?) 9%

- OH 2 OH
(%ﬁ) - b B p P (PP 4 [ E L L -l OF
ce

+ -
au2 l_HZSV l_u2 5u

1 3tF 2y OF 2y oF || 9G 2y % 2, Cr
+ " 228-5+ (1 -7 57 u(l-u)au 7+ V(1 -0%) 5 -u(l-u)&l
2vi(1 - uf) |
2 2
1-p2(fr 1or)[9G 1 1 PF 1o\ (%G 1 Cp
tTE o \Svor v \w vy T3 2y \3vp ~ v 39/ \3vdp " v 39
v vo(1 )
2
+ L F N or \( o % o a&
VAR T 280\ a0 T 2 39 (B17)



Equation (Bl7) is the Fokker-Planck equation in spherical coordinates. It
is possible to utilize it to obtain the general term in the spherical harmonics
expansion of (BF/Bt)CC. This expansion could in principle be obtained by sub-

stitubing the following expansion in equation (B17):

F(v) = f: i FI(v)Y, (6,9) (23)

1=0 m=-1

together with the analogous expansions for F., H, and Gp. The recurrence
relations for the functions Y, (ref. 17, p. 181) would be utilized to express
their derivatives and the products of their derivatives with the quantities

p, (1 - uz)l/z, and so forth, in terms of the functions YZm themselves, It
would then be necessary to expand products of spherical harmonics as follows:

o0

Y (0,9)Y (6,9) = E ¢ ¥ (e,9) (B18)
Zlml szz Zlmlzzmz,l Z,m1+m2
1=0

where the constants CzlleZmZJZ are related to the Clebsch-Gordon coefficients
(ref. 17, p. 514). Finally, the result would have to be rearranged so as to
separate out the various terms in Yjyp,. Although the procedure is straight-
forward, the amount of calculation would be rather large, and the usefulness of
the general term in the expansion would probably not justify the labor in ob-
taining it. For this reason the present report is restricted to the first two
terms (1 = 0,1) in the spherical harmonics expansion of the Fokker-Planck equa-
tion. The nonlinearity of equation (Bl7) is responsible for the difficulty in
working out the general term of the expansion. The expansion of a much simpler
linear collision term appropriate for collisions with infinitely massive field
particles (the so-called Lorentz model) has been carried out in reference 18.
Reference 18 also contains the spherical harmonics expansion of the electric
and magnetic field terms and the spatial gradient terms in the Boltzmann equa-

tion.
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